
Blockstack
Technical Whitepaper

Muneeb Ali

Ryan Shea

 Jude Nelson

Michael J. Freedman

Blockstack: A New Internet for Decentralized Applications

https://blockstack.org

Technical Whitepaper Version 1.1

October 12, 2017

Copyright 2017 Blockstack PBC -- a Public Benefit Corp. All rights reserved.

Parts of this whitepaper were published earlier in the following peer-reviewed

conferences and magazine:

• M. Ali, J. Nelson, R. Shea and M. J. Freedman, “Blockstack: A Global

Naming and Storage System Secured by Blockchains”, 2016 USENIX Annual

Technical Conference, Denver, CO, June 2016.

• J. Nelson, M. Ali, R. Shea and M. J. Freedman, “Extending Existing Blockchains

with Virtualchain”, Workshop on Distributed Cryptocurrencies and Consen-

sus Ledgers, Chicago, IL, July 2016.

• M. Ali, J. Nelson, R. Shea and M. J. Freedman, “Bootstrapping Trust in

Distributed Systems with Blockchains”, USENIX ;login: Issue: Vol. 41, No.

3, Pages 52-58, Fall 2016.

DISCLAIMER: The Blockstack Tokens are a crypto asset that is currently being developed by Block-

stack Token LLC, a Delaware limited liability company, whose website can be found at www.blockstack.com.

This whitepaper does not constitute an offer or sale of Blockstack Tokens (the Tokens) or any other mech-

anism for purchasing the Tokens (such as, without limitation, a fund holding the Tokens or a simple agree-

ment for future tokens related to the Tokens). Any offer or sale of the Tokens or any related instrument

will occur only based on definitive offering documents for the Tokens or the applicable instrument.

Blockstack: A New Internet for Decentralized Applications

Muneeb Ali∗ Ryan Shea∗ Jude Nelson Michael J. Freedman†

http://blockstack.org

Whitepaper Version 1.1

October 12, 2017

Abstract

The traditional internet has many central points of failure and trust, like (a) the Do-

main Name System (DNS) servers, (b) public-key infrastructure, and (c) end-user data

stored on centralized data stores. We present the design and implementation of a new

internet, called Blockstack, where users don’t need to trust remote servers. We remove

any trust points from the middle of the network and use blockchains to secure critical

data bindings. Blockstack implements services for identity, discovery, and storage and

can survive failures of underlying blockchains. The design of Blockstack is informed by

three years of experience from a large blockchain-based production system. Blockstack

gives comparable performance to traditional internet services and enables a much-needed

security and reliability upgrade to the traditional internet.

1 Introduction

The internet was designed more than 40 years ago and is showing signs of age. Critical

internet services can be taken offline by attacks like the DDoS attack on DNS servers [1].

Further, in the current internet architecture users implicitly trust certain hidden services

and intermediaries like domain name servers and certificate authorities (CAs). These

trust points can be exploited to trick users into connecting to malicious websites like

the recent incident where a Turkish CA issued false security certificates for Google [2].

Over the last decade, we’ve seen a shift from desktop apps (that run locally) to

cloud-based apps that store user data on remote servers. These centralized services are

a prime target for hackers and frequently get hacked. In 2016, Yahoo! admitted to

losing information for 500 million people [3]. Security problems with the core internet

∗Co-primary author.
†Professor of Computer Science at Princeton University and an advisor to Blockstack.

1

http://blockstack.org

infrastructure and the centralized data models of web services built on top have exposed

flaws in the internet’s original design.

Blockstack is an open-source effort to re-decentralize the internet; it builds a new

internet for decentralized applications and enables users to own their application data

directly [4]. Blockstack uses the existing internet transport layer (TCP or UDP) and

underlying communication protocols and focuses on removing points of centralization

that exist at the application layer. Alternate transport layer protocols, like new mesh

networking protocols [5], can be supported with Blockstack.

There are many fundamental technical challenges with creating a fully decentral-

ized replacement for core internet components like DNS, public-key infrastructure, and

storage backends. New users/nodes need to establish trust on the network and discover

the relevant data without relying on any remote servers. The decentralized solutions

need to give comparable performance to the traditional internet and scale accordingly

as well. Our implementation of Blockstack has three components:

1. A blockchain, implemented using virtualchains [6], is used to bind digital property,

like domain names, to public keys. Blockstack’s blockchain solves the problem of

bootstrapping trust in a decentralized way i.e., a new node on the network can

independently verify all data bindings.

2. A peer network, called Atlas, gives a global index for discovery information and

3. A decentralized storage system, called Gaia, provides high-performance storage

backends without introducing central trusted parties.

Blockstack is deployed in production and, to date, 74,000 new domains have been

registered on it with several companies and open-source contributors actively developing

new services using Blockstack [4]. We’ve released Blockstack as open-source [7].

2 System Architecture

Blockstack has the following design goals:

1. Decentralized Naming & Discovery: End-users should be able to (a) register

and use human-readable names and (b) discover network resources mapped to

human-readable names without trusting any remote parties.

2. Decentralized Storage: End-users should be able to use decentralized storage

systems where they can store their data without revealing it to any remote parties.

3. Comparable Performance: The end-to-end performance of the new architec-

ture (including name/resource lookups, storage access, etc.) should be comparable

to the traditional internet with centralized services.

Until recently, decentralized naming systems with human-readable names were con-

sidered impossible to build (see Zooko’s Triangle in Section 3) and decentralized storage

2

systems like BitTorrent, etc. don’t offer performance/bandwidth comparable to central-

ized services [8]. Blockstack presents a solution to these problems.

Design Decision #1: Survive Failures of Underlying Blockchains

Our architecture does not put any limitations on which blockchain can be used with

it. Any blockchain can be used, as long as it provides total ordering of operations

(which all blockchains do), but the security and reliability properties are directly de-

pendent on the underlying blockchain. We believe that enabling the ability to migrate

from one blockchain to another is important as it allows for the larger system to survive,

even when the underlying blockchain is compromised. Our architecture also allows for

multiple underlying blockchains and treats blockchains as communication channels that

deliver totally-ordered operations; any number of underlying communication channels

can work as long as they can individually deliver totally-ordered operations.

Design Decision #2: Keep Complexity and Logic Outside of Blockchains

Many blockchains, like Namecoin [9] or Ethereum [10], implement both the control logic

and the data storage plane at the blockchain level (although they leave open the possibil-

ity of using external data stores in the future). We believe that not using blockchains for

data storage is necessary for scalability and keeping complex logic outside of blockchains

is important for both security and scalability. Nodes on the network should not be re-

quired to compute complex untrusted programs just to stay synced with the network.

Further, it’s hard to introduce new features to blockchains after they’ve been deployed

and gained real-world usage. We introduce the concept of virtualchains (Section 4) that

can build arbitrary state machines on top of blockchains without requiring any modifi-

cations to the underlying blockchains. The abstraction of total ordering of operations,

on top of the underlying blockchains. serves as the “narrow waist” of our architecture

and keeps complexity outside of blockchains.

Design Decision #3: Scalable Index for Global Data

Any decentralized network requires an index to the data stored by it. Going back to the

early days of peer networks, Napster introduced a centralized index with decentralized

file transfer in 1999. BitTorrent started with centralized trackers (indexes) as well

and later introduced DHT-based decentralized indexes. DHT-based peer networks are

susceptible to Sybil-attacks and have historically been unreliable and hard to scale,

especially under a lot of churn. We experienced these problems first-hand as our initial

peer network for Blockstack was based on the Kademlia DHT. We introduced a new

unstructured peer network, called the Atlas network, that solves a particular case of

decentralized storage using peer networks–the case where (a) the data set is small in

size and, (b) there is a global list of all indexed items available to the network. In Atlas,

nodes maintain a 100% state replica. The unstructured approach is easier to implement,

has no overhead for maintaining routing structure and is resilient against targeted node

attacks (every node has a full copy of data).

3

local DB

n n+1 n+2 n+3 n+4

Transactions are parsed as updates to the name DB

Zone fileZone file hash
URI’s in zone files

point to stored data

Zone file hashPublic keyDomain name

Amazon S3 Dropbox Microsoft Azure FreeNAS Server Google Drive

B
lo

ckch
ain

Sto
rage

P
eer N

etw
o

rk

Figure 1: Overview of the Blockstack architecture.

2.1 Blockstack Layers

Blockstack’s architecture has three layers as shown in Figure 1), with one layer (the

blockchain layer) in the control plane and two layers (the peer network and data-storage)

in the data plane. The control plane deals with smaller volumes of data and is mostly

concerned with bootstrapping trust [11] and defining the mapping between human-

readable names and network resources. The data plane contains information on how

to discover data (routes/pointers to data) and the actual storage backends. Data is

widely replicated and it doesn’t matter from what source clients read data; clients can

independently verify from the control plane if they received the correct data or not.

Layer 1: Blockchain

In our architecture the blockchain occupies the lowest layer, and serves two purposes:

it provides the storage medium for operations and it provides consensus on the order in

which the operations were written. Virtualchain encodes operations in transactions on

the underlying blockchain. The blockchain provides an abstraction of totally-ordered

operations to virtualchain and serves as the “narrow waist” of our architecture. A lot

of complexity, like mining operations, consensus algorithms, cryptocurrency fluctua-

tions etc., are hidden underneath this abstraction. The higher layers only care about

reading/writing totally ordered operations and can operate on top of any blockchain.

The blockchain layer also includes a virtualchain, which defines new operations with-

out requiring changes to the underlying blockchain. Nodes of the underlying blockchains

4

are not aware of this layer. Virtualchains are like virtual machines, where a specific

VM like Debian 8.7 can run on top of a specific physical machine. Different types of

virtualchains can be defined and they run on top of the specific underlying blockchain.

Virtualchain operations are encoded in valid blockchain transactions as additional meta-

data. Blockchain nodes do see the raw transactions, but the logic to process virtualchain

operations only exists at the virtualchain level.

The rules for accepting or rejecting virtualchain operations are defined in the spe-

cific virtualchain, e.g., a virtualchain which defines a single state machine implementing

operations for a global naming system. Operations accepted by rules defined in our

virtualchain are processed to construct a database that stores information on the global

state of the naming system along with state changes at any given blockchain block.

Layer 2: Peer Network

Blockstack uses a peer network for discovery. The peer network is part of the data

plane. Our architecture separates the task of discovering resources (i.e., routes to data)

from the actual storage of data. This avoids the need for the system to adopt any

particular storage service from the onset, and instead allows multiple storage providers

to coexist, including both cloud storage and P2P systems.

The Blockstack implementation uses zone files for storing routing information, which

are identical to DNS zone files in their format. The zone files are stored in the discovery

layer, implemented as a peer network by Blockstack. Users do not need to trust

the discovery layer because the integrity of any data record in the discovery layer

can be verified by checking the respective hash of that data record in the control plane.

In Blockstack’s current implementation, nodes form a peer network, called the Atlas

network (Section 5), for storing zone files. The peer network only allows zone files to be

written if hash(zonefile) was previously announced in the blockchain. This effectively

whitelists the data that can be stored in the peer network. Data records represent-

ing routes (irrespective of where they are fetched from) can be verified and therefore

cannot be tampered with. In the current implementation of the Atlas network, peer

nodes maintain a full copy of all zone files since the size of zone files is relatively

small (4KB per file). Keeping a full copy of all routing data introduces only a marginal

storage cost on top of storing the blockchain data (which is in the order of several GBs).

Layer 3: Storage

The top-most layer (layer-3) is the storage layer, which hosts the actual data values and

is part of the data plane. All stored data values are signed by an owner key defined in

the control plane. By storing data values outside of the blockchain, Blockstack allows

values of arbitrary size and allows for a variety of storage backends. Users do not

need to trust the storage layer and can verify their integrity in the control plane.

Our design benefits from the performance and reliability of the backend cloud storage

systems used and offers comparable performance to traditional internet services.

Blockstack implements a decentralized naming system, called the Blockchain Name

5

System (BNS) by defining operations in a new virtualchain and storing discovery data

in a peer network called the Atlas Network (Section 5). Our virtualchain uses the

underlying blockchain to achieve consensus on the state of BNS and binds names to

data records. Relying on the consensus protocol of the underlying blockchain, our

virtualchain can provide a total ordering for all operations supported by BNS, like

name registrations, name updates and name transfers. Our virtualchain represents the

global state of BNS, including who owns a particular name and what data is associated

with a name. We present more details on these components in the next sections.

3 BNS: Blockchain Name System

The traditional internet uses the Domain Name System (DNS) for mapping human-

readable names to IP addresses (which give the location of nodes and content). When

internet users type in cnn.com in their browser, DNS servers return the mapping of the

human-readable name to an IP address. ICANN, a non-profit organization, manages

DNS and the root servers. These servers are a central point of trust and failure; they

can be taken offline by DDoS attacks and mappings for domains can be changed by

either forcing changes to the DNS servers or by spoofing replies from them.

In Blockstack, we need a decentralized replacement for DNS i.e., a system that

binds human-readable names to discovery data but doesn’t have any central points

of failure or control. There is a school of thought that argues that human-readable

names are not important and long cryptographic IDs combined with search engines can

replace DNS [12, 13, 14]. We take the view that human-readable names are essential for

providing a good user experience and, in practice, it’d be very hard to convince internet

users to change their habits and stop using human-readable names online.

There is a fundamental computer science challenge with building naming systems.

There are three properties we might want a name to have: the name is (1) unique

(meaning there is no situation where two people can independently create and use a

unique name like cnn.com), (2) human-readable (a name should look like Paul not

1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa), and (3) decentralized (names should be

chosen by users at the edges of the network and not on behalf of users by a central

authority at the center). The computer science challenge is that, before blockchains,

naming systems only allowed for any two of those three properties [15], never all three

at the same time. This limitation is called Zooko’s Triangle [16]. For example,

public keys are unique and decentralized as users can generate them on their computers

without talking to any central service but are not human-readable. Twitter handles are

human-readable and unique, but not decentralized (Twitter, the company, controls the

namespace). Nicknames are human-readable and decentralized (users can choose any

nickname for anyone) but are not unique. Blockchains square Zooko’s Triangle, and for

the first time it’s possible to have human-readable names that are unique without using

any centralized service [16].

Namecoin [9] was the first system to build a decentralized naming system using a

6

blockchain. Our experience of running a production network on Namecoin revealed

certain security and reliability issues that highlight the need for using the largest most-

secure blockchain network [17].

3.1 BNS operations

We present the design of a new blockchain-based naming system, called the Blockchain

Name System (BNS). Our implementation of BNS has been running in production for

more than 3 years. In our new internet, BNS is a replacement for DNS and is meant

to provide similar functionality but without any central root servers. In BNS, names

are owned by cryptographic addresses of the underlying blockchain and their associated

private keys (e.g. ECDSA-based private keys used in Bitcoin [18]). A user preorders and

then registers a name in a two-phase commit process. This is done to avoid front-running

where an attacker can race the user in registering the name because an attacker will be

able to see the unconfirmed transaction on the network. The first user to successfully

write both a preorder and a register transaction is granted ownership of the name.

Further, any previous preorders become invalid when a name is registered. Once a name

is registered, a user can update the name-value pair by sending an update transaction

and uploading the name-value binding. Name transfer operations simply change the

address that is allowed to sign subsequent transactions, while revoke operations disable

any further operations for names.

In BNS, names are organized into namespaces, which are the functional equiva-

lent of top-level domains in DNS—they define the costs and renewal rates of names.

Like names, namespaces must be preordered and then registered. As shown in Fig-

ure 2, in BNS the information for top-level domains (namespaces) is registered on a

root blockchain. Entries for TLDs can point to other blockchains that store data for

domains registered on that TLD. The root blockchain can also be used for defining

TLDs, in which case the TLD entry points to the same blockchain. In DNS, the DNS

root servers, TLD servers, and authoritative servers are outside the trust zone of the

end-user, where the trust zone is defined as either a local machine or local network and

can include a node controlled (and trusted) by the end-user in the wide-area. Figure 2

(top) shows a recursive DNS query for princeton.edu. The query is resolved outside

the user’s trust zone. In BNS, the local BNS server fetches blockchain data from the

respective (decentralized) blockchain networks and keeps a local copy that is contin-

uously synced with the blockchain networks. Individual blockchain records are small

and contain pointers to data outside the blockchain, for example in a peer network.

To resolve a name, say werner.id, the end-user makes a query to the local BNS server

running inside her trust zone. The local BNS server looks at the respective blockchain

record and fetches the respective zone file from an external source, like a peer network.

The external source for zone files is untrusted. The hash of the zone file is present in

the blockchain record and any tampering attempt can be easily detected (by checking

the hash). Figure 3 shows an example BNS zone file for a single domain.

7

End-user

DNS Root Servers

 TLD Servers
 .com

TLD Servers
 .edu

Root Blockchain

 TLD Blockchain
 .app

TLD Blockchain
 .id

Authorative Server
e.g., princeton.edu

DNS Core Infrastructure

BNS Decentralized Infrastructure

Local DNS Server
 (cache)

Local BNS Server
 (cache)

Trust Zone

Peer Network

1

1

2

3

4

sync

sync

8

2

7

3

45

6

Figure 2: A recursive DNS query (top) and an iterative BNS query.

Example Zone File:

Figure 3: An example zone file for BNS.

8

Pricing Functions: Anyone can create a namespace or register names in a names-

pace, as there is no central party to stop someone from doing so. Pricing functions

define how expensive it is to create a namespace or to register names in a namespace.

Defining intelligent pricing functions is a way to prevent “land grabs” i.e., stop people

from registering a lot of namespaces/names that they don’t intend to actually use. BNS

has support for sophisticated pricing functions. For example, we created a .id names-

pace in our implementation of BNS with a pricing function where (a) the price of a

name drops with an increase in name length and (b) introducing non-alphabetic char-

acters in names also drops the price. With this pricing function, the price of john.id >

johnadam.id > john0001.id. The function is generally inspired by the observation that

short names with alphabetics only are considered more desirable on namespaces like the

one for Twitter usernames. It’s possible to create namespaces where name registrations

are free as well. Further, we expect that in the future there will be a reseller market

for names, just as there is for DNS. A detailed discussion of pricing functions is out of

the scope of this whitepaper, and the reader is encouraged to see [15] for more details

on pricing functions and name squatting problems in decentralized naming systems.

Blockstack uses BNS as the default naming system. BNS is implemented by defining

a state machine and rules for state transitions in a new virtualchain. We store zone files

in a new peer network, called the Atlas Network. We present the details for our BNS

implementation with virtualchains and Atlas in Section 4 and Section 5 respectively.

Like names, namespaces also have a pricing function [7]. To start the first namespace on

Blockstack, the .id namespace, we paid 40 bitcoins ($10,000 at the time) to the network.

This shows that even the developers of this decentralized system have to follow the rules

and pay appropriate fees.

3.2 Public Keys in BNS

On the traditional internet DNS domains can used with digital certificates to enhance

security. Digital certificates for websites are the foundational building block of internet

security. When users see the “green lock sign,” they feel that they’re on a secure

connection. In the background, their browser checks the digital certificate of the website.

The “green lock sign” represents that some Certificate Authority (CA), like Verisign,

issued a digital certificate to a website and the website has ownership of that certificate.

The Certificate Authority can issue “malicious” certificates that impersonate businesses

and websites without their permission and users would end up trusting the malicious

certificates – a real problem that has happened several times in recent history, e.g.,

Turktrust, a Turkish CA, issued malicious certificates for Google.com [2].

A blockchain can be used as a global distribution mechanism for public keys and

digital certificates. Since blockchains give a global view and are extremely hard to

tamper with, itd be impractical for an attacker to alter a certificate after its issued or

present incorrect information to only a subset of users. Also, in blockchain-based PKI

there are no central CAs that can be compromised to attack the system.

9

BNS already provides public key associations with domain names and all domains,

by default, get certificates. While efforts like Lets Encrypt [19] are reducing the cost

of obtaining digital certificates and encouraging more websites to enable secure connec-

tions, a vast majority of the internet still runs on insecure connections. If the naming

system binds public keys by default, then all websites have security certificates and

security is on by default. In BNS, domain names can serve as memorable identifiers for

public keys. The names themselves make no implication about identity and are used as

memorable identifiers only. Third-party attestations can be attached to the memorable

name later on. Further, all BNS nodes have access to a single global state, so any key

revocations or state changes to public key mappings cannot be hidden from any user.

4 Virtualchain

Public blockchains are becoming a universal network service. However, it’s hard to

make consensus-breaking changes to production blockchain networks. Introducing new

features directly in a blockchain requires everyone on the network, including miners, to

upgrade. These upgrades potentially break consensus and cause forks [18]. Our experi-

ence with the Namecoin blockchain shows that starting new, smaller blockchains leads

to security problems, like reduced computational power needed to attack the network,

and should be avoided when possible [17]. To overcome this, we created virtualchains,

a virtual blockchain for creating arbitrary state machines on top of already-running

blockchains. Virtualchains, like virtual machines, enable the ability to migrate (from

one blockchain to another) and improve fault tolerance. We used virtualchains to mi-

grate a production network from Namecoin to Bitcoin earlier [20]. The migration showed

that virtualchains could be used to cope with failures with the underlying blockchain.

Blockchains provide a totally-ordered, tamper-resistant log of state transitions. New

applications can store a log of all state changes in a public blockchain, such as Bit-

coin [21], Litecoin [22], or Ethereum [10]. By using the blockchain as a shared com-

munication channel, these applications can then bootstrap global state in a secure,

decentralized manner, since every node on the network can independently construct the

same state.

However, there are two key challenges to using blockchains as a building block for

decentralized applications and services:

1. First, a blockchain can fail, i.e., it can go offline, or its consensus mechanism can

become “centralized” by falling under the de facto control of a single entity. To

tolerate such failures, it should be possible to migrate application state across

blockchains efficiently.

2. The second challenge is that the application’s log can be forked and corrupted

if the underlying blockchain forks. Under a blockchain fork, nodes on different

forks will write and read different events. The blockchain may drop and re-order

transactions when the forks resolve, causing bootstrapping nodes to construct

10

Blockchain

name_op, hash
name_op, hash name_op, hash name_op, hash

name_op, hash

Bitcoin Blockchain

Virtual Blockchain

C
ontrol Plane

D
ata Plane Storage Drivers

S3 Dropbox Linux

Unlimited Data Storage:

Virtualchain op_code, hash
op_code, hash op_code, hash op_code, hash

op_code, hash

Figure 4: Virtualchain operations on top of an underlying blockchain.

different state than already-running nodes. Applications must be able to recover

from blockchain forks.

4.1 Design of Virtualchains

Virtualchain is a virtual blockchain (a logical layer) for building multiple state ma-

chines on top of a blockchain. Virtualchains process transactions in the underlying

blockchains to construct state machines on top of blockchains. Virtualchains provide a

fork*-consistency model [23]. Application nodes replay their logs to achieve application-

level consensus at each block b, such that two nodes will agree on a block if and only

if the application transactions in that block leave the nodes in an identical state. If

their resulting state after executing the operations in block b are identical, then their

generated consensus hash for that block will be the same. Consensus hashes enable

nodes to independently audit and efficiently query their histories, as well as detect forks

and then migrate state between blockchains.

Figure 4 shows how virtualchains process only relevant transactions (transactions

with valid virtualchain opcodes) from the underlying blockchain and ignore other trans-

actions. The transactions accepted by virtualchain are organized in virtual blocks that

are linked together by a consensus hash per block; the consensus hash at a block reflects

all previous virtualchain history. Blockstack’s virtualchain implements a BNS state ma-

chine. Our virtualchain currently uses Bitcoin as the underlying blockchain. The new

opcodes are announced in Bitcoin transactions in a field designated for additional data,

called OP RETURN. This is one of the largest use cases of OP RETURN transactions

on the Bitcoin blockchain today [24].

Consistency Model: Most public blockchains use a variant of Nakamoto con-

sensus [18], which allows concurrent leaders. Appending conflicting blocks creates

blockchain forks, which peers resolve using a proof-of-work [25] metric. Transactions

in the fork with the most proof-of-work are considered authoritative; conflicting trans-

actions are silently discarded, while non-conflicting transactions are incorporated into

subsequent blocks.

Nakamoto consensus gives blockchains the property that longer forks are exponen-

tially rarer if there are no long-lasting network partitions and if most of the compute

11

bn

nn

bn-1bn-2bn-4b… n-5 bn-3

i
n

n n

bn-8

CH(n-4) CH(n-3)

P = {CH(p) | p = n - 2 }

CH(n) = Hash(V + P)

CH(n-2) CH(n-1) V = Merkle(tx ∈ b)

virtualchain tx

} } } } }

Figure 5: Consensus Hash, CH(n), construction from virtualchain transactions.

power is controlled by honest peers [18]. This means that most of the time, transac-

tions are very likely to be durable and linearizable after a constant number of blocks

(confirmations) have been appended on top of them. We use these properties to imple-

ment fork*-consistent replicated state machines (RSMs) on top of public blockchains.

Application nodes read the blockchain to construct state machine replicas and submit

new transactions to the blockchain to execute state transitions.

Consensus Hashes: To make forward progress, nodes read new blockchain trans-

actions and determine whether or not each transaction of the underlying blockchains

represents a valid state transition in virtualchain. Since anyone can write transactions

and they can get arbitrarily delayed, nodes must be able to filter transactions (and as-

sociated state transitions) and ignore transactions that relate to a fork that they’re not

interested in. We achieve this by requiring that the current consensus hash is announced

in new transactions.

A consensus hash is a cryptographic hash that each node calculates at each block.

It is derived from the accepted state transitions in the last-processed block, and a

geometric series of prior-calculated consensus hashes. Figure 5 shows this process. Let

tx ∈ bn be the sequence of transaction logs found in block bn, let Merkle(tx ∈ bn) be a

function that calculates the Merkle tree root over these transactions, and let Hash(x)

be a cryptographic hash function. Then, we define CH(n) to be the consensus hash at

block n, where

Vn = Merkle(tx ∈ bn) (1)

CH(n) = Hash(Vn + Pn) (2)

Block b0 contains the first log entry, while Pn is the geometric series of prior consen-

sus hashes starting from b, i.e., the consensus hash for the previous block, two blocks

ago, four blocks ago, etc.

12

Users include their latest known CH(n) in each transaction they submit through

their clients, and applications ignore state transitions with “stale” (too old) or unknown

consensus hashes. This way, applications ignore forks of their own log, and application

users (or the clients they’re using) can tell when to retry lost transactions (announcing

state transitions). In doing so, consensus hashes preserve the join-at-most-once

property of fork*-consistency: an application will accept a state transition with

CH(n) only if it has accepted all the prior state-transitions that derived CH(n).

Fast Queries: Not all users will have a copy of the full blockchain on their machine.

We use a protocol for fast queries that is useful for creating “lightweight nodes” that

do not need blockchain or state replicas. Instead, they can query highly-available but

untrusted “full nodes” (which have a full copy of the blockchain) as needed. For example,

Blockstack’s virtualchain uses this feature to implement a Simple Name Verification

(SNV) protocol [26].

For fast queries, application users obtain CH(n) from a trusted node, such as one

running on the same host. A user can then use this trusted CH(n) to query previous

state transitions from untrusted nodes in a logarithmic amount of time and space. To

do so, it iteratively queries and verifies Pn and Merkle(tx ∈ bn) using CH(n) until

it finds CH(n′) and Merkle(tx ∈ b′n), where b′ is the block that contains the state

transition to query. Once it has Merkle(tx ∈ b′n), it can ask for and verify the previous

state transitions (tx ∈ b′n).

Blockchain Fork Detection and Recovery: If the transaction logs never retroac-

tively fork, the application logic and consensus hashes can preserve the legitimate-

request property of fork*-consistency. Retroactive forks in proof-of-work blockchains

are highly unlikely, but they can occur since an entity can (theoretically) come up with

a longer blockchain with a different transaction history of old blocks (called a “deep

chain reorg”). Short-lived forks, on the other hand, are fairly common and are not an

issue for applications/services built with virtualchains. Nodes avoid short-lived forks

by only accepting sufficiently-confirmed transactions. Applications may increase the

number of required confirmations to decrease the likelihood of loss or reordering, e.g.,

Blockstack requires 10 confirmations (in the Bitcoin blockchain).

To detect deep chain reorgs, a node runs multiple processes that subscribe to a

geometric series of prior block heights. If a process at a lower height derives a different

consensus hash than one from a higher height, then a blockchain fork might have oc-

curred, and all processes at higher heights have potentially-divergent state. This means

all running nodes may be in a separate fork set from bootstrapping nodes.

We can automate deep reorg discovery, but reconciling the fork sets requires human

intervention, since irreversible actions taken by the application may be based on now-lost

state transitions. Fortunately, long-lived forks are rare and severe enough to be widely

noticed [27] [28] [29]. This means that when they happen, end-users or app developers

can determine which transactions were affected, and re-send state-transitions.

13

Blockchain A

migrate_to(B, state at b)

migrate_from(A, state at b) migrate_finish()

bn

n

n

bn-1bn-2bn-3bn-4

Blockchain B

b’nb’n-1b’n-2b’n-3b’n-4

Figure 6: A framework for migrating from blockchain A to blockchain B.

4.2 Cross-chain Migration

Virtualchains can survive the failure of an underlying blockchain by migrating state

to another blockchain. Doing so requires announcing a future block until which the

current blockchain will be valid (no new transactions will be accepted on the current

blockchain after that block), and then executing a two-step commit to bind the

existing state to the new blockchain. Figure 6 shows the framework where migrating

from blockchain A to B. To begin, the app/service administrator(s) announces a future

block after which the current blockchain will no longer be used for the app/service and

sends special “migrate” transactions to both the current and the new blockchain (to

announce the migration process). The administrator(s) (a) acquires a lock on the new

blockchain, (b) writes the current application state (excluding historic state transitions)

to the new blockchain, and (c) releases the lock on the new blockchain and opens up the

new blockchain to new transactions. Virtualchain verifies that the migrate transactions

are signed by the same principal and verifies that the last-known state on the old

blockchain is consistent with the consensus hash announced on the new blockchain. This

enables seamless cross-chain migration. Virtualchain is released as open source [30] and

developers can build other types of state machines using it.

5 Atlas Network

Blockchains have limited bandwidth and cannot store much data. Every node on the

network has a copy of the data stored on blockchains, and they typically grow linearly

with time, e.g., the Bitcoin blockchain grew from 14GB to 120GB between 2014 and

2017 [31]. In our architecture, only pointers to data values are kept in the blockchain;

peer-networks are used as additional storage. In the Blockstack implementation, the

peer-networks store zone files for BNS (these zone files are identical to DNS zone files).

14

Using peer networks significantly increases the storage capacity but comes with other

challenges: traditional peer-networks are susceptible to Sybil attacks [32] and are not a

reliable source of data, especially under high churn.

In peer networks participating nodes are equally privileged and collaborate to per-

form a function or provide a service. Peer networks were popularized by file sharing

networks like Napster in 1999 [33]. Nodes in a peer network maintain a connection

to a subset of other peers on the network and these connections can be structured or

unstructured (random connections to peers). In our architecture, we use peer networks

for content discovery. Pointers to large data files are stored in peer networks, while the

actual data resides on storage backends (Section 6).

The reliability of the applications and services running on our internet architecture

depends on the reliability of the blockchain layer and discovery/storage peers. Out of

the different layers, the peer networks used for discovery are the most vulnerable to

reliability issues (cloud storage providers have 99.9% uptime SLAs [34] and blockchains

are fully-replicated across peers). Theoretically, any person or company can decide to

run a (centralized) index of discovery data for their particular app/service. Apps can

also choose to index/mirror only a particular namespace (TLD), and they don’t have

to index the pointers to all data. This helps with scalability. Let’s say there are m

namespaces with n name-value pairs in each namespace. Instead of indexing O(m× n)

records, you can index O(n) records and n for your namespace could be significantly

small. However, realistically, the global Blockstack network should have at least one, if

not more, default discovery service for all data in addition to any specialized app-specific

discovery services. Further, the global discovery service cannot violate the trust-to-trust

principle and cannot be centralized. This implies the need to use decentralized peer-to-

peer networks for content discovery.

Challenges with Peer Networks: Peer networks are well studied in distributed

systems [35, 8] and researchers have identified several challenges with peer networks.

• Scalability: In unstructured peer networks, as the number of participant peers

increases, the number of messages exchanged for a lookup grows [35]. Practical

unstructured peer networks, either use “super peers” (KaZaA [36]) or use cen-

tralized trackers (eDonkey 2000 [37]). Structured peer networks, mostly based on

Distributed Hash Tables (DHTs) reduce no. of messages needed for lookups, to

typically O(logN), but suffer from problems like Sybil-attacks and node churn [38].

• Performance: Reads and writes on peer networks have very variable latency

depending on the underlying design, but in most cases, the worst-case performance

of lookups is unacceptable; a request can needlessly bounce through several high-

latency network links before being handled. Some work on DHTs (like DSHTs [39],

and Beehive [40]) try to fix this for frequently-requested data, but it doesn’t help

the long-tail performance and works for only certain type of workloads.

• Reliability: Public peer networks allow anyone to write to them. To deal with

so much data, they simply delete stale data. Applications need to re-announce

15

data every so often to keep it available. Data sources can go off-line before repub-

lishing [41]. Structured peer networks can split into one or more disjoint networks

due to partitions, and re-join later on. This can lead to inconsistent state; some

clients can see one value for the key, and other clients can see a different value.

• Junk Data Writes: Without some rate-limiting or access-control mechanism,

peer networks have no way to limit the amount of data inserted. An adversary

can flood the peer network with lots of garbage data and knock nodes off-line.

• Node Eclipse Attack. In structured peer networks, an attacker can take over

the neighbors of all nodes storing a particular key/value pair and effectively censor

nodes/keys from the network. Such Sybil-attacks are a general problem for struc-

tured peer networks with no good solutions available without requiring centralized

gatekeepers or human input on peer connections [42].

For BNS, the size of individual zone files is fairly small (<4KB) and the total space

needed to store them increases linearly with the no. of domain registrations. Currently,

it takes only 300MB to store all zone files of the 70,000 domains registered on BNS

and 100GB space can store zone files for all 250 million ICANN domains (which is

smaller than the size of the current Bitcoin blockchain). Inspired by the need to store

the (small-sized) zone files of BNS, we designed a new peer network called the Atlas

Network. The Atlas network solves a particular case of decentralized storage using peer

networks–the case where:

1. The data set is small in size and

2. There is a full index of data available to the network.

All Atlas nodes maintain a 100% state replica, and they organize into an unstruc-

tured overlay network. The unstructured approach is easier to implement, has no over-

head for maintaining routing structure and is resilient against targeted node attacks.

When a new Atlas node boots up, it first gets the index of all data keys and hashes of

values stored in the blockchain. After getting the index, Atlas nodes talk to their peers

to fetch key/value pairs they dont have. The Atlas network implements a K-regular

random graph. Each node selects K other nodes at random to be its neighbors using

the Metropolis-Hastings Random Walk algorithm with delayed acceptance (MHRW-

DA [43]), and regularly asks them for the set of key/value pairs they have. Peers pull

missing key/value pairs in rarest-first order to maximize availability, i.e., new key/value

pairs written to the network are given preference for propagation through the network.

In addition to storing key/value pairs locally, peers can also write them to remote

backup locations (e.g., a service like Dropbox or S3) for additional protection against

data loss. When a peer receives a missing key/value pair, it pushes it to its immediate

neighbors that dont have it yet.

Atlas nodes already know the hashes of the zone files so that no one can upload

invalid data. Data is replicated on O(N) nodes instead of only on a small subset of

nodes (typical of DHT-based networks). The Atlas network makes censoring attacks

16

expensive. Censoring the entire network requires attacking O(N) nodes. By contrast,

only O(logN) DHT nodes need to be taken over to censor a key/value pair for everyone.

Even then, the victim node will detect the censorship unless the attacker also eclipses

the victims Bitcoin node (which requires building a fraudulent blockchain fork with

sufficient proof-of-work). We believe that the Atlas network is a significant step forward

towards having a reliable, hard-to-censor, and decentralized peer network.

In our production deployment, during September 2015 and Nov 2016, we used a

Kademlia-based DHT network. We didn’t notice any explicit node eclipse attacks, but

we did encounter partitions of the DHT overlay where some nodes hosted in Hong Kong

and Europe would end up on a different partition. Churn is a general problem with

structured DHTs. Our DHT nodes were programmed not to accept data writes unless

a hash of the data is present in the blockchain, i.e., someone has paid a fee to gain

access to write data. The DHT-based discovery network served as an acceptable initial

design, but with a growing network, the daily and hourly churn became a bigger issue.

The Blockstack implementation switched to the Atlas network from the DHT-based

discovery network in Fall 2016, and since November 2016, we have been distributing

BNS zone files using the Atlas network.

Network Partitions: The Atlas network is more reliable than the previous DHT

network. For our DHT deployment, we frequently ran into network partition issues

where some nodes, e.g., in Hong Kong would get disconnected from the “mainline” DHT.

Between September 2015 and September 2016, there were at least 7 major incidents

where we had to work with our community to restore network partitions in our DHT

deployment. Since moving entirely to the Atlas network, between November 2016 and

the time of this writing (May 2017), we’ve had 0 incidents of network partitions or any

other network outage. In fact, there is no concept of a network partition on the network

since Atlas is unstructured and all nodes have a full replica.

Node Recovery: Atlas nodes can recover from failures on their own. If the lo-

cal index of the Atlas data becomes corrupt, the nodes can reconstruct it from the

blockchain data. Nodes can also re-fetch all zone files in case of a data loss. We ran

an experiment where we intentionally destroyed zone files on Atlas nodes and 100% of

our nodes were able to recover from a complete data loss within hours fully.

The Atlas network is self-healing in that aspect and can recover from failures even if

very few copies of data remain on the peer network.

6 Gaia: Decentralized Storage

On the traditional internet, once end-users establish a secure connection to a website

like Facebook.com they then log in to the service and keep all their data with the remote

service. This model, along with advances in cloud computing, pushes all complexity and

user data to the remote cloud and user devices exist as “dumb screens.” This is a full

departure from the spirit of a decentralized internet where end-user devices were meant

to handle complexity and logic.

17

Dropbox

Peer Network

Peer Node
(full index)

Block NBlock N-1Block N-2Block N-3

(name, hash)

(encrypted data)

lookup(hash)

lookup(URI)

Block N-4Block N-5

Amazon S3 Google Drive FreeNAS Server

Sto
rage Layer

D
isco

very Layer
V

irtu
alch

ain
 Layer

Figure 7: Overview of Gaia and steps for looking up data.

Blockstack has the potential to release users from these data silos by giving users

access to a decentralized storage system, called Gaia, that provides comparable perfor-

mance to centralized cloud providers. Users can log in to apps and services by using

blockchain-based decentralized identity [44] and save data generated by apps/services

on storage backends owned by the user (instead of the service provider). Gaia’s design

philosophy is to reuse existing cloud providers and infrastructure in a way that end-users

don’t need to trust the underlying cloud providers. We treat cloud storage providers

(like Dropbox, Amazon S3, and Google Drive) as “dumb drives” and store encrypted

and/or signed data on them. The cloud providers, like Dropbox, have no visibility into

user’s data; they only see encrypted data blobs. Further, since the associated public

keys or data hashes are discoverable through the blockchain channel, cloud providers

cannot tamper with user data.

In Gaia, the user’s zone file contains a URI record that points to the data, and the

data is constructed to include a signature from the user’s private key. Writing the data

involves signing and replicating the data (but not the zone file), and reading the data

involves fetching the zone file and data, verifying that hash(zonefile) matches the hash

in the blockchain, and verifying the data’s signature with the user’s public key. This

allows for writes to be as fast as the signature algorithm and underlying storage system

allow, since updating the data does not alter the zone file and thus does not require any

blockchain transactions. However, readers and writers must employ a data versioning

18

scheme to avoid consuming stale data.

Figure 7 shows an overview of Gaia. We show an example encrypted data blob with

three replicated copies at Dropbox, Google Drive, and a FreeNAS Server (and not on

Amazon S3). In our Blockstack implementation, we have drivers for individual cloud

providers like Dropbox and S3, and integrate them as a storage backends. This hides

the individual APIs for storage backends and exposes a simple PUT/GET interface to

Blockstack users. Looking up data for a name, like werner.id, works as follows:

1. Lookup the name in the virtualchain to get the (name, hash) pair.

2. Lookup the hash(name) in the Atlas network to get the respective zone file (all

peers in the Atlas network have the full replica of all zonefiles).

3. Get the storage backend URI from the zonefile and lookup the URI to connect to

the storage backend.

4. Read the data (decrypt it if needed and if you have the access rights) and verify

the respective signature or hash.

Performance: The goal of our architecture is to give comparable performance

to traditional cloud providers. We introduce meaningful security and fault-tolerance

benefits by removing central points of control and failure and paying a small overhead

on read/write performance is totally worth it as long as the overhead is not significant

and not noticeable to the average users. We evaluated the performance of reads and

writes of Gaia to demonstrate that it reads and writes files at competitive rates with

the underlying storage. Gaia adds a negligible constant storage space overhead per file

(roughly 5% larger files with compression). There is CPU overhead for encryption and

compression, but since the file size difference is very small, the network performance for

reads and writes is similar to directly accessing the underlying storage service.

We measured the write performance and overheads associated with uploading 1, 10,

and 100 megabyte files to Amazon S3. We see that the CPU-bound overhead is in the

order of 2 seconds for large (100MB) files. Many low-hanging performance optimizations

still remain in our implementation. Similarly, reading encrypted files from Blockstack

with S3 as storage backend is competitive with a direct read from S3. The sources

of overhead, verifying the signature and decrypting the data, are CPU-bound while in

practice performance will largely be network-bound for wide-area usage.

System Scalability: The storage layer of our architecture is not a scalability

bottleneck. Contemporary cloud storage systems are highly scalable [34]. The Atlas

network also scales well because it does not index individual user files or file-chunks

but indexes pointers to user’s storage backends. The storage backends deal with the

bulk of data read/writes, and the Atlas network is involved only when (a) a user is

changing or updating her storage backends or public key mappings, or (b) new users

are registered on the system. When registering new domains/users, zone file hashes

must be announced on the underlying blockchain. The underlying blockchains typi-

cally have low-bandwidth and are the bottleneck on scalability (relative to the Atlas

19

network). We’re exploring the option to pack multiple virtualchain transactions into a

single blockchain transaction [45] for addressing blockchain scalability. This can enable

us to register several hundreds of millions of end-users. Scaling Blockstack to billions

of users in practice will likely uncover scalability issues that are not obvious right now

and addressing these challenges is an area of future work.

7 Conclusion

We present Blockstack, a new decentralized internet secured by blockchains. Blockstack

provides a full stack to developers for building decentralized applications including ser-

vices for identity, discovery, and storage. Blockstack can introduce new functionality

without modifying the underlying blockchains and can survive the failure of underlying

blockchains. The design of Blockstack is informed by 3 years of production experience

from one of the largest blockchain-based production systems to date. Our performance

results show that Blockstack can give comparable performance to cloud services on

the traditional internet and only introduces a small CPU overhead. We’ve released

Blockstack as open-source [7].

Acknowledgements

Blockstack was started by Muneeb and Ryan in 2014 and over the years many people

have contributed to it. We’d like to thank Larry Salibra, Guy Lepage, Patrick Stanley,

Aaron Blankstein, John Light, and 2,500+ open-source community members for their

contributions. We will update this list as we release new versions of the white paper.

References
[1] L. Newman, “What we know about fridays massive east coast internet outage,” Oct. 2016. https:

//www.wired.com/2016/10/internet-outage-ddos-dns-dyn/.

[2] S. Rosenblatt, “Fake turkish site certs create threat of bogus google sites,” Jan. 2013. http:

//cnet.co/2oArU6O.

[3] N. Perlroth, “Yahoo says hackers stole data on 500 million users in 2014,” Sept. 2016. http:

//nyti.ms/2oAqn0G.

[4] “Blockstack website,” 2017. http://blockstack.org.

[5] “Gotenna mesh networking.” https://www.gotenna.com.

[6] J. Nelson, M. Ali, R. Shea, and M. J. Freedman, “Extending existing blockchains with vir-
tualchain,” in Workshop on Distributed Cryptocurrencies and Consensus Ledgers (DCCL’16),
(Chicago, IL), June 2016.

[7] “Blockstack source code release v0.14,” 2017. http://github.com/blockstack/blockstack-core.

[8] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A survey of peer-to-peer
storage techniques for distributed file systems,” in Proceedings of the International Conference on
Information Technology: Coding and Computing (ITCC’05) - Volume 02, ITCC ’05, pp. 205–213,
2005.

[9] “Namecoin.” https://namecoin.info.

[10] V. Buterin, “A next-generation smart contract and decentralized application platform,” tech. rep.,
2017. https://github.com/ethereum/wiki/wiki/White-Paper.

20

https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
http://cnet.co/2oArU6O
http://cnet.co/2oArU6O
http://nyti.ms/2oAqn0G
http://nyti.ms/2oAqn0G
http://blockstack.org
https://www.gotenna.com
http://github.com/blockstack/blockstack-core
https://namecoin.info
https://github.com/ethereum/wiki/wiki/White-Paper

[11] M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Bootstrapping trust in distributed systems with
blockchains,” USENIX ;login:, vol. 41, no. 3, pp. 52–58, 2016.

[12] H. Balakrishnan, S. Shenker, and M. Walfish, “Semantic-Free Referencing in Linked Distributed
Systems,” in Peer-to-Peer Systems II, vol. 2735 of Lecture Notes in Computer Science, pp. 197–
206, Springer Berlin / Heidelberg, 2003.

[13] Juan Benet, “IPFS - Content Addressed, Versioned, P2P File System,” draft, ipfs.io, 2015. https:
//github.com/ipfs/papers.

[14] D. Mazieres, M. Kaminsky, M. F. Kasshoek, and E. Witchel, “Separating key management from
file system security,” in Proc. 17th SOSP, (Kiawah Island Resort, SC), 1999.

[15] H. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. Narayanan, “An empirical study
of Namecoin and lessons for decentralized namespace design,” WEIS ’15: Proceedings of the 14th

Workshop on the Economics of Information Security, June 2015.

[16] D. Kaminsky, “Spelunking the triangle: Exploring aaron swartzs take on zookos triangle,” Jan
2011. http://dankaminsky.com/2011/01/13/spelunk-tri/.

[17] M. Ali, J. Nelson, R. Shea, and M. Freedman, “Blockstack: A global naming and storage system
secured by blockchains,” in Proc. USENIX Annual Technical Conference (ATC ’16), June 2016.

[18] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten, “Sok: Research per-
spectives and challenges for bitcoin and cryptocurrencies,” in 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pp. 104–121, 2015.

[19] “Let’s encrypt.” https://letsencrypt.org.

[20] “Why Blockstack is migrating to the Bitcoin blockchain.” https://blockstack.org/blog/

why-blockstack-is-migrating-to-the-bitcoin-blockchain.

[21] Satoshi Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” tech report, 2009. https:

//bitcoin.org/bitcoin.pdf.

[22] “Litecoin.” https://litecoin.org.

[23] J. Li and D. Maziéres, “Beyond one-third faulty replicas in byzantine fault tolerant systems.,” in
Proc. 4th USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI
’07), (February), 2007.

[24] “Statistics of usage for bitcoin OP RETURN.” Retrieved from http://opreturn.org in May 2017.

[25] M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,” in Secure Information
Networks, pp. 258–272, Springer, 1999.

[26] “Simplified name verification protocol.” http://blockstack.org/docs/light-clients.

[27] “Bitcoin Improvement Proposal 50.” https://github.com/bitcoin/bips/blob/master/

bip-0050.mediawiki.

[28] “Bitcoin Improvement Proposal 66.” https://github.com/bitcoin/bips/blob/master/

bip-0066.mediawiki.

[29] “List of Bitcoin CVEs.” https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures.

[30] “Virtualchain source code release v0.14.1,” May 2017. http://github.com/blockstack/

virtualchain.

[31] “Bitcoin blockchain size.” https://blockchain.info/charts/blocks-size.

[32] J. R. Douceur, “The sybil attack,” in Revised Papers from the First International Workshop on
Peer-to-Peer Systems, IPTPS ’01, (London, UK), pp. 251–260, Springer-Verlag, 2002.

[33] B. Carlsson and R. Gustavsson, The Rise and Fall of Napster - An Evolutionary Approach,
pp. 347–354. Springer Berlin Heidelberg, 2001.

[34] “Google Cloud Storage SLA.” Retrieved from https://cloud.google.com/storage/sla in May
2017.

[35] B. P. B, K. Bertels, and S. Vassiliadis, “A survey of peer-to-peer networks,” in 16th workshop on
circuits, systems, and signal processing (proRISC), 2005.

[36] J. Liang, R. Kumar, and K. Ross, “The KaZaA Overlay: A Measurement Study,” Sept. 2004.

[37] O. Heckmann, A. Bock, A. Mauthe, and R. Steinmetz, “The eDonkey file-sharing network.,” in
GI Jahrestagung (2) (P. Dadam and M. Reichert, eds.), vol. 51 of LNI, pp. 224–228, GI.

[38] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of peer-to-
peer overlay network schemes,” Commun. Surveys Tuts., vol. 7, pp. 72–93, Apr. 2005.

21

https://github.com/ipfs/papers
https://github.com/ipfs/papers
http://dankaminsky.com/2011/01/13/spelunk-tri/
https://letsencrypt.org
https://blockstack.org/blog/why-blockstack-is-migrating-to-the-bitcoin-blockchain
https://blockstack.org/blog/why-blockstack-is-migrating-to-the-bitcoin-blockchain
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://litecoin.org
http://opreturn.org
http://blockstack.org/docs/light-clients
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki
https://en.bitcoin.it/wiki/Common_Vulnerabilities_and_Exposures
http://github.com/blockstack/virtualchain
http://github.com/blockstack/virtualchain
https://blockchain.info/charts/blocks-size
https://cloud.google.com/storage/sla

[39] M. J. Freedman, E. Freudenthal, and D. Mazieres, “Democratizing content publication with coral,”
in Proc. 1st NSDI, (San Francisco, CA), 2004.

[40] V. Ramasubramanian and E. G. Sirer, “Beehive: O(1)lookup performance for power-law query
distributions in peer-to-peer overlays,” in Proceedings of the 1st Conference on Symposium on
Networked Systems Design and Implementation - Volume 1, NSDI’04, pp. 8–8, 2004.

[41] M. J. Freedman, “Experiences with coralcdn: A five-year operational view,” in Proceedings of the
7th USENIX Conference on Networked Systems Design and Implementation, NSDI’10, 2010.

[42] C. Lesniewski-Laas and M. F. Kaashoek, “Whānau: A Sybil-proof distributed hash table,” in
Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’10), (San Jose, CA), Apr. 2010.

[43] C.-H. Lee, X. Xu, and D. Y. Eun, “Beyond random walk and metropolis-hastings samplers:
Why you should not backtrack for unbiased graph sampling,” in Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, pp. 319–330, 2012.

[44] “What is a blockstack id?.” https://blockstack.org/docs/blockchain-identity.

[45] “Chainpoint white paper.” https://tierion.com/chainpoint.

22

https://blockstack.org/docs/blockchain-identity
https://tierion.com/chainpoint

	Introduction
	System Architecture
	Blockstack Layers

	BNS: Blockchain Name System
	BNS operations
	Public Keys in BNS

	Virtualchain
	Design of Virtualchains
	Cross-chain Migration

	Atlas Network
	Gaia: Decentralized Storage
	Conclusion

